2021-12-20 14:10:11 公務(wù)員考試網(wǎng) 文章來源:遼寧分院
2022年國考筆試階段已經(jīng)告一段落,2022年省考馬上就要來臨,很多同學(xué)已經(jīng)開始學(xué)習(xí)省考的相關(guān)內(nèi)容了,最近一段時間也經(jīng)常有同學(xué)向老師詢問一些關(guān)于數(shù)量方向的知識點,那么接下來我們就來說一說同學(xué)們問的最多的一個知識點——特殊的排列組合模型。
特殊的排列組合模型都有哪些呢?這里面老師給大家整理一下特殊的排列組合模型:捆綁法模型、插空法模型、隔板法模型和環(huán)形排列模型,希望這些內(nèi)容對大家有一些幫助。
首先是捆綁法模型,當(dāng)題目中出現(xiàn)兩個或者兩個以上元素必須相鄰,不能分開的要求,那么這個時候就是捆綁法模型,舉個例子:A、B、C、D、E五個人站排,其中A、B是情侶,不管怎么站必須挨著,問一共有多少種排列方式?那么這道題目就是捆綁法的一道題目,我們解題方法是先捆綁算整體,再松綁算內(nèi)部,A、B兩個人必須相鄰,那就把他倆捆在一起看成一個整體,然后與剩余的三個人排序,共有種情況,然后算A、B的內(nèi)部順序,共有種情況,所以排列方式一共有種方式,這就是捆綁法模型。
插空法模型和捆綁法模型正好相反,當(dāng)題目中出現(xiàn)兩個或者兩個以上元素不能相鄰、必須分開的要求,這個時候就是插空法模型,舉個例子:A、B、C、D、E五個人站排,其中A、B是仇人,不管怎么站必須分開,問一共有多少種排列方式?這個就是插空法的題目。我們的解題方法:先安排無要求的元素,再把有要求的元素插入到空隙中,我們可以先把C、D、E三個人排好,共有種情況,他們?nèi)齻人排好了之后產(chǎn)生四個空隙,把A、B兩個人插入到這四個空隙中然后排序,有種情況,所以一共有種排列方式,這就是插空法模型。
隔板法指的是把M個相同的元素分成N份,要求每份至少1個。比如說,把9個大小、顏色、形狀完全相同的蘋果分給5個人,要求每人至少分一個蘋果,問有多少種分配方法?這里面9個相同的蘋果就是M個相同的元素,分給5個人就是分成N份,每人至少分一個蘋果就是每份至少1個,這個就是隔板法,我們記住解題方式即可,一共有種分配方式,所以,對于上面的例子共有種分配方法,這就是隔板法模型。
環(huán)形排列就很好理解了,按照環(huán)形來排列的就是環(huán)形排列,比如A、B、C、D、E、F六個人圍繞著篝火去坐,問有多少種不同的排列方式,這個就是環(huán)形排列問題,大家記住解題方法,N個元素環(huán)形排列,共有種排列方式,6個人圍繞著篝火去坐,所以共有種排列方式,這就是環(huán)形排列問題。
以上就是老師介紹給大家的特殊排列組合模型,希望對大家有所幫助。
相關(guān)內(nèi)容推薦:
貼心考公客服
貼心專屬客服